share_log

GNQ Insilico's AI-Driven Digital Twin Platform Shows Promising Results in First Virtually Simulated Clinical Drug Trial

GNQ Insilico's AI-Driven Digital Twin Platform Shows Promising Results in First Virtually Simulated Clinical Drug Trial

GNQ Insilico的人工智能驅動數字孿生平台在首個虛擬模擬臨床藥物試驗中展現出令人滿意的結果。
newsfile ·  2024/06/18 14:00
  • GNQ Insilico's ("GNQ") proprietary genomics-driven platform is leveraging Artificial Intelligence (AI) and Quantum Computing technologies to create "intelligent digital twins" of human patients that can mimic how a drug will interact with an individual patient's unique biology, down to the cellular level.

  • GNQ's platform has demonstrated success in synthesizing digital twins of human patients.

  • Additionally, GNQ was able to simulate the effects of a drug on these digital twins.

  • The results highlight how genomics and AI can be used by the pharmaceuticals and life sciences industries to improve the efficiency of clinical trial designs for new drug development.

  • GNQ Insilico的專有基因組學驅動平台利用人工智能(AI)和量子計算技術創建人體患者的"智能數字孿生",可以模擬藥物如何與個體患者的獨特生物學相互作用,直至細胞水平。數字孿生對人類患者的數字孿生進行綜合,可以模擬藥物如何與個體患者的獨特生物學相互作用,直至細胞水平。

  • GNQ的平台已經展示成功合成人類患者的數字孿生。

  • 此外,GNQ已經能夠模擬數字孿生上藥物的影響。

  • 結果突顯出基因組學和人工智能如何被製藥和生命科學行業用於改進新藥開發的臨床試驗設計效率。

Vancouver, British Columbia--(Newsfile Corp. - June 18, 2024) - Trenchant Technologies Capital (CSE: AITT) (OTC: AITTF) (FSE: 5730) "Trenchant" or "the Company"), is pleased to announce that its portfolio company GNQ Insilico ("GNQ") has demonstrated promising results in synthesizing digital twins of human patients, and simulating the effects of an infertility drug on these digital replicas using its proprietary AI-driven platform.

溫哥華,不列顛哥倫比亞省--(新聞稿庫Newsfile Corp. - 2024年6月18日) - Trenchant Technologies Capital (CSE: AITT) (OTC: AITTF) (FSE: 5730) "Trenchant"或"該公司"的投資組合公司GNQ Insilico ("GNQ")在其專有的AI驅動平台上合成人類患者的數字孿生,並可以模擬不孕症藥物對這些數字孿生的影響,並取得了有希望的結果。

Applications of Digital Twins in Drug Discovery and Development

數字孿生在藥物發現和開發中的應用

In the healthcare industry, digital twins are an emerging technology that has the potential to advance patient care and personalized medicine. Medical digital twins are computer-based virtual models of living and non-living entities which can range from an individual human patient to organs, tissue cells, neural networks, micro-environments, or entire populations. Rather than 3D models, medical digital twins are dynamic virtual replicas of real-life entities and processes, continually interacting with and adapting to real-time data and predicting corresponding future scenarios within a complex system, using AI and quantum computer technologies.

在醫療行業中,數字孿生是一項新興技術,有潛力推進患者護理和個性化醫療。醫療數字孿生是基於計算機的虛擬模型,可以是個體人類患者、器官、組織細胞、神經網絡、微環境或整個人口等有生命、無生命的實體。醫療數字孿生不是三維模型,而是現實生活實體和過程的動態虛擬複製,不斷與實時數據互動和適應,使用人工智能和量子計算技術在複雜系統中預測相應的未來情景。

Medical digital twins have the potential to significantly improve the drug discovery and drug development process by improving the efficiency, efficacy and outcome of clinical trials. Currently, the average new drug experiences a 90% failure rate1 during clinical trials, while the average cost to bring a new drug to market is estimated at between $161 million - $1.8 billion (fully capitalized costs inclusive of failures)2. The average timeframe for bringing a typical new drug to market, from discovery to FDA approval, is between 10 - 15 years3.

醫學數字孿生有望通過提高臨床試驗的效率、療效和結果顯著改進藥物發現和開發過程。目前,平均新藥經歷90%的失效率,而將新藥推向市場的平均成本估計在1.61億到18億美元之間(包括失敗的全資本化成本)。將一個典型新藥推向市場的平均時間從發現到FDA批准需要10-15年。1通過數字孿生進行"in silico"藥物模擬,模擬藥物如何與個體患者的獨特生物學相互作用,直至細胞水平,可以顯著提高藥物公司設計和優化臨床試驗方案的能力,從而降低成本和失敗率。2醫學數字孿生有望通過提高臨床試驗的效率、療效和結果顯著改進藥物發現和開發過程。目前,平均新藥經歷90%的失效率,而將新藥推向市場的平均成本估計在1.61億到18億美元之間(包括失敗的全資本化成本)。將一個典型新藥推向市場的平均時間從發現到FDA批准需要10-15年。3.

Significant improvements in drug discovery and development can be made possible through "in silico" drug simulations using digital twins, by mimicking how a drug will interact with an individual patient's unique biology, down to the cellular level. This could assist pharmaceutical companies in better designing and optimizing clinical trial protocols by enabling them to more accurately predict how these drug compounds will behave prior to human trials, thereby reducing costs and failure rates.

通過數字孿生進行"in silico"藥物模擬,模擬藥物如何與個體患者的獨特生物學相互作用,直至細胞水平,可以顯著提高藥物公司設計和優化臨床試驗方案的能力,從而降低成本和失敗率。

GNQ's Virtually Simulated Clinical Trial

GNQ虛擬模擬臨床試驗

GNQ Insilico simulated the pharmacokinetics and pharmacodynamics of an existing infertility treatment on thousands of digital twins, spanning diverse genetic backgrounds and health profiles, that were synthesized using its platform. GNQ's AI optimizer then analyzed the simulated outcomes to identify optimal dosing strategies tailored to each digital twin's characteristics, accounting for factors like genetics, epigenetics, and environmental exposures.

GNQ Insilico在其平台上模擬了現有不孕症治療藥物對成千上萬個數字孿生的藥代動力學和藥效學,這些數字孿生覆蓋了不同的基因背景和健康狀況,並使用其AI優化器分析了模擬結果,以確定量身定製的最佳劑量策略,考慮到基因、表觀遺傳學和環境暴露等因素。

Sudhir Saxena, CTO of GNQ Insilico commented: "Human clinical trials are often hindered by variability in how patients respond to drugs. Our AI-driven digital twins platform will enable us to better optimize the trial design for precise patient subpopulations, before ever running an expensive clinical trial."

"GNQ Insilico"的CTO Sudhir Saxena評論道:"人類臨床試驗往往受到患者對藥物反應的變異性的制約。我們的AI驅動的數字孿生平台將使我們能夠更好地優化精確患者亞群的試驗設計,而不必運行昂貴的臨床試驗。"GNQ的兩名團隊成員與其他領先組織的技術專家合作,還共同撰寫了一篇有關相關主題的最近發表的論文,說明量子計算如何用於優化臨床試驗設計。要了解更多信息,請閱讀論文:"

Two of GNQ's team members, in collaboration with other technologists from leading organizations, also co-authored a recently published paper on a related subject, which illustrates how quantum computing may be leveraged to optimize clinical trial design. To learn more, read the paper: 'Towards Quantum Computing for Clinical Trial Design and Optimization: A Perspective on New Opportunities and Challenges'.

GNQ 的兩名團隊成員與其他領先組織的技術專家合作,共同撰寫了一篇關於相關主題的最近發表的論文,闡述了量子計算如何優化臨床試驗設計。了解更多信息,請閱讀論文:關於GNQ Insilico'.

About GNQ Insilico

關於 GNQ Insilico

GNQ Insilico is an AI-biotechnology company pioneering the development and application of next-generation artificial intelligence capabilities to accelerate therapeutic research, clinical development, and individualized patient care. For more information, visit .

GNQ Insilico是一家人工智能生物技術公司,致力於開發和應用下一代人工智能能力,加速治療研究、臨床開發和個性化患者護理。欲了解更多信息,請訪問。

About Trenchant Technologies Capital

關於Trenchant Technologies Capital

Trenchant Technologies Capital (CSE: AITT) is an investment issuer focused primarily on seeking investment in companies introducing novel technologies, including Artificial Intelligence and Quantum Computing, to traditional business models that are due for disruption. Trenchant's team undergoes a rigorous due diligence process to identify companies led by seasoned management teams that are strong candidates for acquisition or an initial public offering (IPO).

Trenchant Technologies Capital (CSE:AITT) 是一家投資頒發者,主要專注於尋找那些將人工智能和量子計算等新技術引入傳統業務模型中以進行顛覆的公司進行投資。Trenchant 的團隊經過嚴格的盡職調查過程,以識別由經驗豐富的管理團隊領導的公司,這些公司是收購或首次公開發行 (IPO) 的強有力候選人。

In May 2024, Trenchant Technologies Capital acquired a 20% ownership interest in GNQ Insilico from parent company My Next Health Inc. Further, Trenchant holds an option to acquire up to 40% of GNQ Insilico. Learn more here.
ON BEHALF OF THE BOARD TRENCHANT CAPITAL CORP.

2024年5月,Trenchant Technologies Capital從母公司My Next Health Inc.收購了GNQ Insilico 20%的所有權,Trenchant還持有收購GNQ Insilico多達40%的權利。了解更多信息,請點擊這裏。
代表董事會的TRENCHANT CAPITAL CORP。

Per: "Eric Boehnke"
Eric Boehnke, CEO

按:"Eric Boehnke"
首席執行官Eric Boehnke

For further information, please contact:
Trenchant Technologies Capital Corp.
Eric Boehnke, CEO
Phone: (604) 307-4274

如需更多信息,請聯繫:丹·努恩(Dan Noone)
Trenchant Technologies Capital Corp.
首席執行官Eric Boehnke
電話:(604) 307-4274

Forward-Looking Statements

前瞻性聲明

This news release contains certain "forward-looking statements" within the meaning of such statements under applicable securities law. Forward-looking statements are frequently characterized by words such as "anticipates", "plan", "continue", "expect", "project", "intend", "believe", "anticipate", "estimate", "may", "will", "potential", "proposed", "positioned" and other similar words, or statements that certain events or conditions "may" or "will" occur. These statements, including but not limited to GNQ's ability to successful complete all necessary trials and regulatory approval processes necessary to be in a position to commercialize any of its technologies, including but not limited to its proprietary genomics-driven platform are only predictions. Various assumptions were used in drawing the conclusions or making the predictions contained in the forward-looking statements throughout this news release. Forward-looking statements are based on the opinions and estimates of management of GNQ at the date the statements are made and are subject to a variety of risks and uncertainties and other factors that could cause actual events or results to differ materially from those projected in the forward-looking statements. Trenchant Capital and GNQ are under no obligation, and expressly disclaims any intention or obligation, to update or revise any forward-looking statements, whether as a result of new information, future events or otherwise, except as expressly required by applicable law.

本新聞稿包含某些“前瞻性聲明”,這些聲明在適用的證券法下被定義爲這些聲明。前瞻性聲明經常用諸如“預計”、“計劃”、“繼續”、“期望”、“項目”、“打算”、“信任”、“預計”、“估計”、“可能”、“將”、“潛在”、“建議”、“定位”等類似詞語表述,或陳述特定事件或狀況“可能”或“將”發生。這些語句,包括但不限於GNQ能否成功完成所有必要的試驗和監管批准過程,以便具備商業化其任何技術的能力,包括但不限於其專有的基於基因組學的平台,僅是預測。本新聞稿各處的前瞻性聲明所基於的假設有所不同。前瞻性聲明基於GNQ管理層對這些聲明發表日期的意見和估計,並且受到各種風險和不確定性以及可能導致實際事件或結果與前瞻性聲明所預測的發生的其他因素的影響。Trenchant Capital和GNQ沒有義務,並明確放棄了任何意圖或義務,更新或修訂任何前瞻性描述,無論是由於新信息,未來事件還是其他原因,除非適用法律明確要求。

Neither the Canadian Securities Exchange nor its Market Regulator (as that term is defined in the policies of the Canadian Securities Exchange) accepts responsibility for the adequacy or accuracy of this news release.

加拿大證券交易所及其市場監管機構(如其他證券交易所的政策中所定義的那樣)不對本新聞稿的充足性或準確性承擔責任。


1 Sun, D., Gao, W., Hu, H., & Zhou, S. (2022). Why 90% of clinical drug development fails and how to improve it? Acta Pharmaceutica Sinica B, 12(7), 3049-3062.
2 Morgan, S., Grootendorst, P., Lexchin, J., Cunningham, C., & Greyson, D. (2011). The cost of drug development: A systematic review. Health Policy, 100(1), 4-17.
3 Sertkaya, A., Birkenbach, A., Berlind, A., & Eyraud, J., Eastern Research Group, Inc. (2014). Examination of Clinical Trial Costs and Barriers for Drug Development. Assistant Secretary of Planning and Evaluation (ASPE).

1Sun, D., Gao, W., Hu, H., & Zhou, S. (2022). Why 90% of clinical drug development fails and how to improve it? Acta Pharmaceutica Sinica B, 12(7), 3049-3062.
2Morgan, S., Grootendorst, P., Lexchin, J., Cunningham, C., & Greyson, D. (2011). The cost of drug development: A systematic review. Health Policy, 100(1), 4-17.
3Sertkaya, A., Birkenbach, A., Berlind, A., & Eyraud, J., Eastern Research Group, Inc. (2014). 考察藥物研發的臨床試驗成本和障礙,助理規劃和評估秘書處(ASPE)。注:此新聞稿使用原文大小寫格式。

声明:本內容僅用作提供資訊及教育之目的,不構成對任何特定投資或投資策略的推薦或認可。 更多信息
    搶先評論