share_log

New Lunit Study Demonstrates Universal AI Model for Analysis of Immunohistochemistry Images

New Lunit Study Demonstrates Universal AI Model for Analysis of Immunohistochemistry Images

新的Lunit研究展示了用於分析免疫組織化學圖像的通用人工智能模型
PR Newswire ·  12/12 08:08

Research in npj Precision Oncology highlights multi-cohort training approach and accurate analysis of unseen immunohistochemistry data

npj Precision Oncology 的研究強調了多隊列訓練方法和對看不見的免疫組織化學數據的準確分析

SEOUL, South Korea, Dec. 12, 2024 /PRNewswire/ -- Lunit (KRX:328130.KQ), a leading provider of AI-powered solutions for cancer diagnostics and therapeutics, today announced the publication of a new study in npj Precision Oncology detailing the development of its Universal Immunohistochemistry (uIHC) AI model. The study demonstrates how the model excels at analyzing diverse cancer types and IHC stains, including datasets it had never encountered before, due to a novel training approach. Now commercialized as Lunit SCOPE uIHC, the model enables advanced biomarker formation from even singleplex IHC, with subcellular stain localization, continuous intensity scoring, and cell type identification..

韓國首爾,2024年12月12日 /PRNewswire/--由人工智能驅動的癌症診斷和治療解決方案的領先提供商盧尼特(KRX: 328130.KQ)今天宣佈 在 npj Precision Oncology 上發表一項新研究 詳細介紹了其通用免疫組織化學(uiHC)人工智能模型的開發。該研究表明,由於採用了新的訓練方法,該模型在分析不同的癌症類型和IHC染色方面表現出色,包括以前從未遇到過的數據集。該模型現已商業化爲Lunit SCOPE uiHC,即使是單重免疫也能形成先進的生物標誌物,具有亞細胞染色定位、持續強度評分和細胞類型識別功能。

Lunit's Universal Immunohistochemistry (uIHC) AI model, "Lunit SCOPE uIHC"
Lunit 的通用免疫組織化學 (uiHC) AI 模型 「Lunit SCOPE uiHC」

Addressing Challenges in IHC Analysis

解決 IHC 分析中的挑戰

Immunohistochemistry (IHC) is an essential tool in oncology, enabling pathologists to detect and quantify protein expression which in turn guides decisions for systemic therapy. However, while several AI algorithms exist to assist in scoring IHC images and improving accuracy, current AI models face two major limitations:

免疫組織化學(IHC)是腫瘤學的重要工具,它使病理學家能夠檢測和量化蛋白質表達,進而指導全身治療的決策。但是,儘管有幾種人工智能算法可以幫助對IHC圖像進行評分和提高準確性,但當前的人工智能模型面臨兩個主要侷限性:

  1. Data Dependency: Current AI-IHC models require large numbers of immunostain-specific images for training, which are difficult to obtain, particularly for novel immunostain-target pairs.
  2. Lack of Generalization: Current AI-IHC models struggle to analyze datasets that differ from their training set either in immunostain or cancer types, limiting their ability to be effective in diverse indications.
  1. 數據依賴性:當前的AI-IHC模型需要大量的免疫染色特異性圖像進行訓練,而這些圖像很難獲得,尤其是對於新的免疫染色-靶標對而言。
  2. 缺乏概括性:當前的AI-IHC模型難以分析在免疫染色或癌症類型方面與訓練集不同的數據集,這限制了它們在不同適應症中的有效能力。

These challenges underscore the need for scalable solutions capable of accurate analysis across a wide range of cancer types and immunostains.

這些挑戰突顯了對能夠對各種癌症類型和免疫染色素進行準確分析的可擴展解決方案的需求。

uIHC Model Outperforms in Generalization

uiHC 模型在泛化方面表現優於其他模型

Lunit's study compared eight deep learning models, including four single-cohort (trained using data from a single stain or cancer type) and four multi-cohort (trained on combined datasets spanning multiple stains and cancer types) approaches, to evaluate their performance on both familiar and unseen datasets. The results validated the uIHC model's ability to generalize across diverse datasets with high accuracy.

Lunit 的研究比較了八種深度學習模型,包括四種單隊列(使用來自單一染色或癌症類型的數據進行訓練)和四種多隊列(在涵蓋多種染色和癌症類型的組合數據集上訓練)方法,以評估它們在熟悉和看不見的數據集上的表現。結果驗證了uiHC模型能夠高精度地對不同的數據集進行概括。

Key results include:

主要結果包括:

  • High Concordance on Known Datasets: The uIHC model achieved a Cohen's kappa score of 0.792, surpassing the best single-cohort model, which scored 0.744 when analyzing known cancer types and immunostains.
  • Superior Generalization to Unseen Data: On novel datasets involving previously unseen cancer types and immunostains, the uIHC model achieved a Cohen's kappa score of 0.610, representing a relative improvement of 10.2% over the single-cohort model average of 0.508.
  • Enhanced Tumor Proportion Score (TPS) Accuracy: Across multi-stain test sets, the uIHC model achieved an AUC of 0.921 for TPS evaluations and a TPS accuracy of 75.7%, demonstrating its reliability in quantifying IHC images.
  • 已知數據集的高一致性:uiHC模型的Kappa分數爲0.792,超過了最佳單隊列模型,後者在分析已知癌症類型和免疫染色劑時得分爲0.744。
  • 對看不見的數據具有卓越的概括性:在涉及以前未見過的癌症類型和免疫染色劑的新數據集上,UiHC模型的科恩kappa分數爲0.610,與單隊列模型平均值0.508相比,相對提高了10.2%。
  • 增強的腫瘤比例評分(TPS)準確性:在多染色測試集中,uIHC模型的TPS評估AUC爲0.921,TPS準確率爲75.7%,這表明了其在量化IHC圖像方面的可靠性。

These findings highlight the model's robust performance across a wide variety of cancer types and immunostains, including those it had not been trained on.

這些發現突顯了該模型在各種癌症類型和免疫染色素上的強勁表現,包括那些未經訓練的癌症類型和免疫染色。

The uIHC model's ability to generalize across diverse IHC images marks a transformative step in digital pathology. By reducing the dependency on large stain-specific datasets, it enables scalable and efficient biomarker analysis for clinical diagnostics and drug development. This capability is particularly valuable for evaluating new biomarkers associated with novel therapies, addressing a critical bottleneck in precision oncology.

uiHC模型能夠對不同的IHC圖像進行概括,這標誌着數字病理學邁出了變革性的一步。通過減少對大型染色特異性數據集的依賴,它可以爲臨床診斷和藥物開發提供可擴展和高效的生物標誌物分析。這種能力對於評估與新療法相關的新生物標誌物特別有價值,可以解決精準腫瘤學的關鍵瓶頸。

"Our Universal Immunohistochemistry AI model solves a practical bottleneck in development settings—handling unseen cancer types and stains without requiring additional data annotation," said Brandon Suh, CEO of Lunit. "By proving the effectiveness of a multi-cohort training approach, this study shows how AI can be adapted to real-world complexities, delivering both precision and scalability. With the launch of Lunit SCOPE uIHC, we're enabling researchers and clinicians to focus on what truly matters: advancing patient care and accelerating therapeutic innovation."

Lunit首席執行官Brandon Suh表示:「我們的通用免疫組織化學AI模型解決了開發環境中的一個實際瓶頸——無需額外數據註釋即可處理看不見的癌症類型和染色。」「通過證明多隊列訓練方法的有效性,這項研究表明了人工智能如何適應現實世界的複雜性,同時提供精度和可擴展性。隨着Lunit SCOPE uiHC的推出,我們使研究人員和臨床醫生能夠專注於真正重要的事情:推進患者護理和加速治療創新。」

About Lunit

關於 Lunit

Founded in 2013, Lunit (KRX:328130.KQ) is a medical AI company on a mission to conquer cancer. We harness AI-powered medical image analytics and AI biomarkers to ensure accurate diagnosis and optimal treatment for each cancer patient. The FDA-cleared Lunit INSIGHT suite for cancer screening serves over 4,500 hospitals and medical institutions across 55+ countries.

Lunit(KRX: 328130.KQ)成立於2013年,是一家醫療人工智能公司,其使命是戰勝癌症。我們利用人工智能驅動的醫學圖像分析和人工智能生物標誌物,確保爲每位癌症患者提供準確的診斷和最佳治療。經美國食品藥品管理局批准的Lunit Insight癌症篩查套件爲55多個國家的4500多家醫院和醫療機構提供服務。

Lunit clinical studies have been published in top journals, including the Journal of Clinical Oncology and the Lancet Digital Health, and presented at global conferences such as ASCO and RSNA. In 2024, Lunit acquired Volpara Health Technologies, setting the stage for unparalleled synergy and accuracy, particularly in breast health and screening technologies. Headquartered in Seoul, South Korea, with a network of offices worldwide, Lunit leads the global fight against cancer. Discover more at lunit.io.

Lunit的臨床研究已發表在頂級期刊上,包括《臨床腫瘤學雜誌》和《柳葉刀數字健康》,並在ASCO和RSNA等全球會議上發表。2024年,Lunit收購了Volpara Health Technologies,爲無與倫比的協同作用和準確性奠定了基礎,尤其是在乳房健康和篩查技術方面。Lunit總部位於韓國首爾,在全球設有辦事處網絡,領導全球抗擊癌症。在以下網址了解更多 lunit.io.

SOURCE Lunit

來源 Lunit

WANT YOUR COMPANY'S NEWS FEATURED ON PRNEWSWIRE.COM?

想在 PRNEWSWIRE.COM 上刊登貴公司的新聞嗎?

440k+
440k+

Newsrooms &
新聞編輯室和

Influencers
有影響力的人
9k+
9k+

Digital Media
數字媒體

Outlets
網點
270k+
270k+

Journalists
記者

Opted In
選擇加入
GET STARTED
開始吧
声明:本內容僅用作提供資訊及教育之目的,不構成對任何特定投資或投資策略的推薦或認可。 更多信息
    搶先評論